Architecting Systems
with UML 2.0

Morgan Bjirkander and Gris Kobryn, Telclogic

ignaling the end of the method wars, the Object Management
Group (OMG) first standardized the Unified Modeling Lan-
guage! in 1997. The software industry rapidly accepted it as the
standard modeling language for specifying software and system

architectures. Although UML is primarily intended for general-purpose

modeling, it’s receiving extensive use in diverse specialized areas, such as

business process modeling and real-time-systems modeling.

Despite these successes, development tools
have been slow to realize UMLs full potential.
In addition, the software industry has evolved
considerably during the last six years, and the
first version of UML (UML 1.x) is now dated.
Two examples illustrate the difficulty of pro-
gramming in UML 1.x. The first is the main-
streaming of component-based development
for enterprise applications, as with the propa-
gation of J2EE (Java 2 Platform, Enterprise
Edition), COM+ (the extension to Microsoft’s
Component Object Model), and, recently, Mi-

Despite the successes of UML 1.x, modeling tools have been slow
to realize its full potential for specifying software and system

architectures. UML 2.0 will make the language more current and
improve its expressive power and precision.

0740-7459/03/$17.00 © 2003 IEEE

Published by the IEEE Computer Society 1EEE SOFTWARE

crosoft’s .NET. The second is the common use
of more mature modeling languages, such as
SDL (Specification and Description Language)?
and ROOM (Real-Time Object-Oriented
Modeling),? to specify components and system
architectures for real-time applications. If you
try to model either of these demanding do-
mains with UML 1.x, you will soon find that it
does not cope well with their paradigms or
complexity. Consequently, UML tools serving
these domains have had to provide proprietary
language extensions to address UML’s preci-
sion and scalability limitations.

During the last few years, application cre-
ation’s focus has shifted from code to models,
and model-driven development has taken off.
Various model transformation and code gener-
ation techniques let you automatically generate
applications from models. Some tools take this

57

P.E§ iFuelMonitor
iAngle @—— ElectricSystem iFuelControl

I i Power [l—(iElectricity
pS {)iFeedback

Steering] Class
iAngle

[Port
Provided interface

iSteering Required interface
C

Figure 1. Classes

58

precision to properly handle such models.

Aside from UML 1.x’s inability to ade-
quately support such technology advances, it
presents other significant problems for tool
vendors and users. To address these issues, the
OMG process requires a major revision of the
language. Fortunately, the standardization
process for creating UML 2.0 started more
than three years ago and is nearing completion.
In this article, we look at some major improve-
ments proposed for UML 2.0.# The new con-
cepts are not forced on users. Backward com-
patibility is a strong requirement for UML 2.0,
and you should be able to continue using the
basic language as you did before, if you desire.

For most system architectures, a fundamen-
tal necessity is specifying their structures. A
sound structure makes distributing the sys-
tem’s development and maintaining its integ-
rity easier over time. Many modern program-
ming languages have adopted interfaces as a
means to describe the services available from
specific classes. Here we distinguish between

two kinds of interfaces for classes:

B Provided interfaces describe the services

that a class implements.

IEEE SOFTWARE http://computer.org/software

one step further, and also let you execute the
models. In this context, a modeling language
can serve as a visual programming language,
but with variable levels of abstraction. This ap-
proach allows much earlier verification than is
normally possible, because you don’t need to
produce code in order to check the system’s
functionality. Unfortunately, UML lacks the

B Required interfaces describe the services
that others must provide for the class to op-
erate properly in a particular environment.

This distinction supports the development of
each class as a standalone entity that does not
need to know anything about the entities that
implement the required interfaces. UML also
allows you to specify provided and required
interfaces for components, but because of space
limitations, here we focus on the use of inter-
faces with classes.

A UML class might be used in many differ-
ent ways, because different stakeholders re-
quire different sets of services. Although im-
plementing multiple interfaces on a class
might partially express these different uses,
developers also need to be able to group inter-
faces belonging to particular stakeholders.
Each such group provides a different view of
the class. UML 2.0 realizes this through the
port construct (see Figure 1). As we will see,
these ports play another important role when
you assemble classes.

A port connects a class’s internals to its en-
vironment. It functions as an intentional open-
ing in the class’s encapsulation through which
messages are sent either into or out of the
class, depending on the port’s provided or re-
quired interfaces. A port that has both pro-
vided and required interfaces is bidirectional.

Decomposing a system

A particular influence on UML 2.0’ use of
interfaces has been component-based develop-
ment, which aims to hierarchically decompose a
system into smaller and smaller parts and then
connect (“wire”) these parts together. Of course,
once you've defined a part, you can reuse it in
many other contexts. The provided interfaces let
you view a class as a black-box component,
whose implementation is known only if you
look inside it. You can also describe the order in
which its services can be invoked by using alter-
native views (for example, using interactions or
state machines) that don’t directly expose the in-
ternal implementation. Naturally, these choices
affect how you describe your structures.

Figure 2 defines a typical compositional
structure of an Automobile class. The dia-
gram provides a hierarchical view of the parts
that make up an automobile.

In contrast, Figure 3a shows how the auto-
mobile’s parts are connected to each other.

iSteering

Automobile
0..1
1| 1] 1] 1| 1
PowerTrain Steering ElectricSystem VehicleStructure FuelSystem
0..1 0..1
1| 1] 1] 1 1
PowerSteeringPump Rack SteeringColumn Body Chassis
Class
4 Whole-part compositions
class Automobile
:PowerTrain
pP
iFuel
isteering :Steering| jipower :FuelSystem | pF2 pA

iPower

iExhaust
pF1l

iElectricity

:ElectricSystem

DE

(@
iFuel
iSteering PA
——J Automobile .<(iExhaust
(b)
Provided Required
interface I Port C interface

|:| Part —— Connector

This white-box view of the class shows the
Automobile class’s different parts—that is,
Automobile’s implementation. This view of
the composition tree focuses on the relation-
ships between parts at the same level and on
how connectors join them. These connectors
describe the communications paths that are
valid in this particular context. You can zoom
out of this view, which would give you the
black-box view of the Automobile class (see
Figure 3b), or zoom into any of the parts to
access its white-box view. The two comple-

mentary views let you decompose systems of
arbitrary complexity. The class owning the
parts is usually called the container class; each
part represents the use of a class in the context
of the container. Another way to think of a
part is as a set of instances of a particular type.

This example also shows the second use of
ports: as a connection point of a class, through
which you can connect parts. The context in
which a class is used determines how it inter-
acts with its environment; in each such con-
text it can function as a part that connects to

July/August 2003

Figure 2. An
Automobile class’s
compositional
structure.

Figure 3. An
Automobile class’s
internal structure
(some details
omitted): (a) white-
box view; (b) black-
box view.

IEEE SOFTWARE 59

class CDPlayer J

iControl

Behavioral

¥ Port port

l iInitiation

:Record [*]

—<

iSpeaker iSpeaker

Provided C Required

interface - interface Connector | _|Part

Figure 4. A class’s
internal structure
with behavioral
ports.

60 IEEE SOFTWARE

other parts. In the previous example, the Pow-
erTrain class functioned as a part in the con-
text of an Automobile class; it would have
been connected differently in the context of a
Boat class.

Adding behavior to the mix

A system does not consist of structure
alone. In some cases, as we saw previously, a
class’s behavior is delegated to its parts, but in
the end a class must also include behavior. The
class itself might have a behavior, which might
be represented through behavioral constructs,
such as a state machine, an activity, or an in-
teraction. Also, the methods of its operations
might be defined using behaviors. When a
class’s internal structure consists of parts, the
parts commonly communicate with the con-
tainer class. Just as each part might have a be-
havior, the container might have behavior de-
scribing how to create the parts, initialize
them, or route messages, for example.

In a class’s black-box view, you cannot
know whether a port is attached to the con-
tainer class’s behavior or routed to a part
through a connector, because the view doesn’t
reveal this level of implementation detail. In the
white-box view, however, some ports are be-
havioral ports, as Figure 4 shows. The behav-
ioral ports are attached directly to the container
class’s behavior and are particularly common
when a state machine represents that behavior.

A container class always has some implicit
behavior that is never shown because it is part

http://computer.org/software

of the semantics of hierarchical decomposition.
Whenever an instance of the container class is
created, the container instance also creates in-
stances representing its parts. Similarly, when-
ever an instance of a container class is deleted,
that instance deletes its part instances.

One of the UML 2.0 work’s great under-
takings has been to integrate activities with
their related actions. (An action is a funda-
mental unit of behavioral specification that
represents some transformation or processing.
Actions tend to be general, and apply to all
kinds of behavior—for instance, state ma-
chines, interactions, or activities. An activity is
the basic behavioral construct used for model-
ing activity diagrams, which specify behavior
using a hybrid control and dataflow model.) A
few years ago, an initiative began to make
UML able to specify executable models. This
initiative essentially replaced the previous ac-
tion model with a new one in which you could
express actions with precise procedural se-
mantics. The overlap with activities was glar-
ing, however. UML 2.0 has significantly im-
proved this part of the language; UML actions
are now defined in as much as detail as an or-
dinary programming language’s actions (or
statements).

The ability to describe system functionality
at a higher abstraction level than in an ordi-
nary programming language such as Java or
C++ makes it possible to execute UML mod-
els. This enables system verification at a much
earlier stage in the development life cycle and
allows tools to automate tests by using UML
models. However, UML cannot serve as a pro-
gramming language out of the box. First, no
notation has been specified for UML’s actions,
so different tool vendors can specify their own
syntax. Second, because UML is intended for
many different areas, it has a flexible defini-
tion of semantics that must be tightened in
some areas or further specified in others. Fi-
nally, programmers normally define a set of
predefined data types to be used directly in
models; UMDs profiles mechanism is intended
to deal with each of these cases.

Being able to execute a model provides the
additional benefit that the model becomes in-
dependent not only from the platform but also
from the target language. Given appropriate
transformation rules, you can generate code

for different languages and optimize it for dif-
ferent situations. Because the information in
the model lets you generate appropriate opti-
mizations and distributed deployments, the
need decreases to focus on these issues when
defining the system’s functionality.

ML 1.x was never quite able to live

up to its original hype, which some-

times portrayed it as a magic solution
for all known software or system problems.
Although UML 2.0 is likewise not a panacea,
its improvements can significantly increase de-
velopment’s efficiency. This increase occurs
despite the known flaws introduced by revi-
sion, where languages typically suffer from de-
sign-by-committee compromises. This is the
price we pay for standards and for having dif-
ferent tools that can interoperate.

Because UML aims to be suitable for many
different audiences, it is a large language. So,
it has the concomitant design problem that re-
moving things from a general-purpose lan-
guage with a large user base is difficult. For
example, business process modelers would
shun a major revision without activities; like-
wise, embedded-systems engineers would
avoid an update lacking state machines. These
two paradigms for expressing behavior are
each useful in their own right. However, not
everyone needs to learn or apply all of UML,
and users are expected to specialize in the ar-
eas they need to do their work. To further help
in this regard, the language has been subdi-
vided into a number of compliance points,
which should make it easier to implement and
learn selectively and incrementally.

UML 2.0 work is entering a new phase that
focuses more on tuning and bug fixing than
adding new features. After completion of the
major revision will come updates to modeling
tools that implement the powerful new UML
2.0 features. If the tools live up to the new spec-
ification’s promise, expect significant improve-
ments in how you architect your systems. @

References

1. Unified Modeling Language Specification, Version 1.5,
OMG document formal/03-03-01, Object Management
Group, 2003; www.omg.org/technology/documents/
formal/uml.htm.

2. ITU Recommendation Z.100: Specification and De-
scription Language (SDL), Int’l Telecommunication
Union, 2000.

About the Authors

Morgan Bjirkander is a senior methods engineer at Telelogic. He is parficipating in
the creation and standardization of UML 2.0, and his major technical interest is model-based
application creation. He received his MSc in computer science from the Lund Institute of Tech-
nology. He is a member of the IEEE. Contact him at Telelogic AB, PO Box 4128, Kungsgatan 6,
SE-203 12 Malmg, Sweden; mbj@telelogic.com.

Cris Kobryn is the chief technologist for Telelogic, where he is responsible for standards
leadership, sirategic planning, and technology evangelism. His areas of expertise are distrib-
uted software architectures, component-hased development, and software modeling. As an Ob-
ject Management Group representative, he has been a major contributor to the Unified Model-
ing Language specification. He chaired infernational standardization teams to specify UML 1.1
and UML 2.0, and serves as the cochair of the OMG's Analysis and Design Task Force. He re-
ceived his BA in geochemistry from Colgate University and his BSCS from San Diego State Uni-
versity. He is a member of the IEEE, ACM, AAAI, and INCOSE. Contact him at Telelogic, PO Box
2320, Fallbrook, CA 92088; cris.kobryn@telelogic.com.

3. B. Selic, G. Gullekson, and P.T. Ward, Real-Time Ob-
ject-Oriented Modeling, John Wiley & Sons, 1994.

4. UML 2.0 Superstructure, 3rd Revision, OMG docu-
ment ad/03-04-01, Object Management Group, 2003,
www.omg.org/cgi-bin/doc?ad/03-04-01.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

felligent System

UPCOMING ISSUES:

currents in Al

Iinformation Integration
on the Web

Agents and Markets

VISIT US ONLINE AT

July/August 2003 1EEE SOFTWARE 61

