
COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 29

proposing the UML specification for international
standardization. It is anticipated that the “fast
track” PAS process will complete sometime next
year, at which time UML will be formally recog-
nized as an international standard for information
technology.

The major benefits of international standardiza-
tion for a specification include wide recognition and
acceptance, which typically enlarge the market for
products based on it. However, these benefits often
demand a high price. Standardization processes are
typically formal and protracted, seeking to accom-
modate a diverse range of technical and business
requirements. From a business perspective, the

timescales of standards usually conflict with the
competitive need to use the latest technology as
early as possible. From a technical perspective, the
need to achieve consensus encourages “design by
committee” processes. In this sort of environment,
sound technical tradeoffs are often overridden by
inferior political compromises. Too frequently the
resulting specifications become bloated with patches
in a manner similar to the way laws become fattened
with riders in “pork belly” legislation.

This article explores how the UML is faring in
the international standardization process. It assumes
the reader is generally familiar with the use of UML,
and instead focuses on the language’s recent and

�
As the UML reaches the ripe age of four,

both its proponents and its critics are scanning the
recent changes in the UML 1.3 revision.

In a relatively short period

of time the Unified Modeling Language has emerged as

the software industry’s dominant modeling language.

UML is not only a de facto modeling language standard;

it is fast becoming a de jure standard. Nearly two years ago

the Object Management Group (OMG) adopted UML as

its standard modeling language. As an approved Publicly Available Specification (PAS)

submitter to the International Organization for Standardization (ISO), the OMG is

CRIS KOBRYN

UML 2001:
A Standardization Odyssey

future evolution. The
processes and architectures
for UML change manage-
ment are examined, followed
by discussion of how these
processes and architectures
were used in the recent
minor revision of the lan-
guage (UML 1.3), and how
they may be applied in the
next major revision (UML
2.0), which is tentatively
scheduled to be completed in
2001. Factors contributing to
the success of the UML will
be assessed here, followed by
speculation on its future.

Pre-Standardization
History
The UML started out as a
collaboration among three
outstanding methodologists
who are collectively referred
to as “the Amigos”: Grady
Booch, Ivar Jacobson, and
James Rumbaugh. At first
Booch and Rumbaugh
sought to unify their meth-
ods with the Unified
Method v. 0.8 in 1995; a
year later Jacobson joined
them to collaborate on the
slightly less ambitious task
of unifying their modeling
languages with UML 0.9 [1,
2]. The UML static struc-
ture diagram in Figure 1
shows these early specifica-
tions and their descendents
in historical perspective.

The UML reaped the
benefits and assumed the responsibilities of its privi-
leged birth. Users quickly recognized the advantages of
a common modeling language that could be used to
visualize, specify, construct and document the artifacts
of a software system. They enthusiastically applied
early drafts of the language to diverse domains ranging
from finance and health to telecommunications and
aerospace. Driven by strong user demand, the model-
ing tool vendors soon included UML support in their
products.

At the same time that UML was becoming a de
facto industry standard, an international team of

modeling experts assumed the responsibility to make
the language a formal standard as well. The “UML
Partners,” representing a diverse mix of vendors and
system integrators, began working with the Amigos
in 1996 to propose UML as the standard modeling
language for the OMG. The Partners organized
themselves into a software development team that
followed a disciplined process. Since the process was
based on an iterative and incremental development
life cycle, the team produced frequent “builds” and
draft releases of the specification, just as one would
do when developing a commercial product.

30 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

«document»
UML 1.2

«document»
UML 1.3

«refine»

«document»
UML 1.4

«document»
UML 2.0

«refine»

«refine»

«document»
UML 1.1

«refine»

«document»
UML 0.9

«refine»

«document»
Unified Method

0.8

«refine»

«document»
UML 1.0

«refine» Editorial revision
with no significant
technical changes.

January 1997
(initial submission
to OMG)

September 1997
(final submission
to OMG)

2000?
(planned minor revision)

2001?
(planned major revision)

1996

1998

1999

1995

refinement dependency

document stereotype

Figure 1. The origin and descent of UML.

The Partners focused on improving the language’s
architecture and formalism, and ensuring that it was fully
general purpose (i.e., that it met the demands of other
mainstream methods in addition to those of the Ami-
gos). They also defined a facility for interchanging UML
models between tools and an optional language for con-
straints. The Partners tendered their initial UML pro-
posal to the OMG (UML 1.0) in January 1997 [7]. After
nine months of intensive improvements to the specifica-
tion they submitted their final proposal (UML 1.1) in
September 1997, which the OMG officially adopted as
its object modeling standard in November 1997 [8].

It is important to note that the UML suffered some
undesirable side effects from its relatively fast ride
through the OMG submission process. Although the
infrastructure and most of the superstructure of the lan-
guage were sound, several significant problems were
known at the time of the final submission:

• Incomplete semantics and notation for
activity graphs. Activity graph semantics,
which were added relatively later in the
process, were not fully integrated with
the state machine semantics on which
they depended. In addition, some nota-
tion conveniences required by business
modelers were missing.

• Standard elements bloat. The language
specification included many standard ele-
ments (stereotypes, tagged values, and
constraints) that were hastily added to
address the requirements of various com-
peting methods groups. Many of these
standard elements had sparse semantics
and were inconsistently named and
organized.

• Architectural misalignment. The submitters
fell short of their goal of implementing a
4-layer metamodel architecture using a
strict metamodeling approach.1 Instead
they settled for the pragmatic, but less rig-
orous, loose (non-strict) metamodeling
approach. This adversely affected the inte-
gration of UML with other OMG model-
ing standards, such as the Meta Object
Facility (MOF) [5].

Rather than delay the standardization of
UML, the submitters resolved to address
some of these problems in the next revision of
the language.

Processes for Evolution
To better understand the process for UML
evolution, it will be helpful to examine the

generic mechanisms that the OMG provides for stan-
dards revisions: Request for Proposals (RFPs) and
Revision Task Forces (RTFs) [6]. The manner in
which the RFP process complements the RTF and
submission processes is shown in a UML activity dia-
gram in Figure 2. In this diagram the submission,
RFP and RTF processes are partitioned into vertical
“swimlanes” labeled for the stakeholders who drive
each process (Submission Team, Task Force, and Revi-
sion Task Force, respectively). Activities are shown by
shapes with straight tops and bottoms, and with convex
arcs on the side; object flows that are inputs to or out-
puts by an activity are shown by rectangles.

The RFP process is the OMG’s primary mechanism
for adopting new specifications and enhancing existing

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 31

Issue RFP

[optional]

Begin

Submission Team Revision Task ForceTask Force

Submit
specification

draft

Finalize
specification

Implement
specification

Enhance
specification

Revise
specification

Recommend
revision

Evaluate final
submissions

Vote to
recommend

Evaluate initial
submissions

Develop
technology

specification

Collaborate w
competitive
submitters

start activity

swimlane

control flowactivity

conditional
thread

fork of control

join of control

object flow

input value

join and fork
of control

[if YES] [if NO]

[if Enhanced]else

branch

guard

end activity

Specification
[adopted]

RFP
[issued]

Specification
[initial

proposal]

Specification
[final

proposal]

Specification
[revised]

Figure 2. Activity diagram showing OMG processes.

1In strict metamodeling, every element of a Mn level model is an instance of exactly one
element of a Mn+1 level model. In loose metamodeling a Mn level model is an instance
of a Mn+1 level model.

specifications. As the left and middle swimlanes show,
a Task Force issues an RFP that one or more Submis-
sion Teams respond to with draft specifications referred
to as initial proposals. The Task Force then evaluates
the initial proposals and provides feedback to the sub-
mitters, who are encouraged to collaborate with com-
petitors before completing their final proposals. After
the Task Force evaluates the final proposals it votes to
recommend one of them. If a final proposal receives a
majority of affirmative votes in the sponsoring Task
Force it is then passed to the Architecture Board and
the Task Force’s parent technology committee for their
approvals.2

If a final proposal acquires all required approvals it
becomes an OMG adopted technology. Otherwise, the
Task Force has the option to reissue the RFP with
changes that ideally reflect lessons learned. Shortly after
a specification is adopted a Revision Task Force is
formed to revise the specification and recommend its
changes for adoption. These activities are shown in the
right swimlane of Figure 2.

The first UML revision task force. Shortly after the
OMG Analysis and Design Task Force recommended
the UML 1.1 specification for adoption in September
1997, the Platform Technology Committee chartered a
UML Revision Task Force to collect comments and
recommend changes that would clarify ambiguities
and correct details [6]. Most of the members of the
RTF were veterans of the UML Partners team that pre-
pared the final submission of UML. Consequently,
they already had a disciplined software process and
were intimately familiar with the specification and its
legacy problems.

Following its charter, the UML RTF resolved to
make the following improvements to the UML 1.1
specification:

• Fix typographical and grammatical errors;
• Resolve logical inconsistencies;
• Correct technical errors and omissions;
• Clarify vague and ambiguous statements; and
• Improve document organization and readability.

The revision work was an open process, in which the
UML RTF met regularly at OMG Technical Com-
mittee meetings to review and resolve outstanding
issues. They considered issues formally submitted to
OMG mailing lists (e.g., issues@omg.org, uml-
rtf@omg.org) as well as those identified by RTF
members. The RTF classified the issues and stored
them in an issues database, which allowed the task
force to systematically review and resolve them. Issues

that couldn’t be resolved quickly were delegated to spe-
cialized workgroups (for example, the Structural Work-
group for issues related to static structural modeling)
for further action.

Between Technical Committee meetings the work-
groups functioned as virtual teams that recommended
corrections and clarifications to the issues assigned to
them. Workgroups reported their progress during
biweekly RTF teleconferences where they sought task
force consensus for their proposed changes. The RTF
published incremental revisions of the draft and the
issues database to the UML RTF Web (uml.shl.com)
so that others could track its progress. They also pub-
lished alpha and beta drafts of the specification on the
OMG Web site (www.omg.org).

The first major artifact produced by the UML RTF
was an editorial revision (UML 1.2), which reformat-
ted the specification to make it more consistent with
other OMG specifications, and corrected typographi-
cal and grammatical errors [9]. While this revision cor-
rected some patent logical inconsistencies (for example,
conflicting names in diagrams and their descriptions),
it did not include any other significant technical
improvements to the language.

The second major artifact delivered by the RTF was
its technical revision (UML 1.3), which corrected or
ameliorated the legacy problems known at the time of
the UML 1.1 submission, and also rectified many bugs
discovered afterward [10]. The RTF unanimously rec-
ommended that the OMG approve its final draft of
UML 1.3 and submitted a final report in June 1999
[11]. The recommended specification was then for-
warded to the Architecture Board and the Platform
Technology Committee for their approvals.

Architectures for Evolution
Successful software projects tend to be associated with
sound processes and robust architectures. The UML
specification is no exception to this rule. As shown in
the preceding sections, the UML Partners and the
UML RTF followed a disciplined software process in
producing the UML 1.0, 1.1, 1.2 and 1.3 specifica-
tions. In this section, we examine the architectures
that were used to produce these specifications.

The UML is specified via a metamodel, which is
one of the strata of a 4-layer metamodel architectural
pattern. The other layers in this pattern are the meta-
metamodel layer, the model layer and the user objects
layer. The metamodel layer is derived from the meta-
metamodel layer, which for UML is defined by the
OMG Meta Object Facility’s (MOF) meta-meta-
model. In particular, metaclasses in the UML meta-
model are instances of the MOF meta-metaclasses.
This architectural pattern is shown in the model dia-

32 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

2These last steps, as well as some other details, are omitted here for the sake of brevity.

gram in Figure 3 [4].
In this diagram the

models at different layers
are shown as package
symbols (folder icons)
with a small triangle sym-
bol in the upper-right
corner. The models that
are also metamodels
(MOF Meta-Metamodel
and UML Metamodel)
are illustrated as «meta-
model» stereotypes on the
Model base element.
Similarly, metaclasses in
the metamodel layers are
shown as «metaclass»
stereotypes on the Class
base model element.
Instance-of metarelation-
ships between elements in
the different layers are
illustrated by the
«instanceOf» keyword on
dependency arrows. The
user objects layer is repre-
sented by an executable
instance of the Passen-
gerTicket class, which is
located at at the bottom
of the diagram.

The metamodel archi-
tectural pattern is a
proven infrastructure for
defining the precise
semantics required by
complex models that need to be reliably stored, shared,
manipulated, and exchanged across tools. There are
several advantages associated with this approach:

• It recursively refines the semantic constructs at
each layer, resulting in more concise and regular
semantics.

• It provides an infrastructure for defining heavy-
weight and lightweight extension mechanisms,
such as new metaclasses and stereotypes.

• It architecturally aligns the UML metamodel with
other standards based on a 4-layer metamodeling
architecture, such as the Meta Object Facility and
the XMI Facility for model interchange [12].

At the metamodel layer the UML metamodel is
decomposed into three logical subpackages: Founda-
tion, Behavioral Elements, and Model Management. Fig-

ure 3 shows these packages as folder icons, with the
dependencies between them illustrated as dashed
arrows [4]. The package at the tail of the arrow (the
client) depends upon the package at the head of the
arrow (the supplier). The top-level packages are decom-
posed into subpackages, indicated by nesting the fold-
ers. For example, the Foundation package consists of
the Core, Extension Mechanisms, and Data Types sub-
packages. The top-level packages are described here:

• The Foundation package is the linguistic infra-
structure that specifies the static structure of mod-
els. This package supports various structural
diagrams, including class diagrams, object dia-
grams, component diagrams, and deployment dia-
grams.

• The Behavioral Elements package is the linguistic
superstructure that specifies the dynamic behavior

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 33

package

dependency

Metaattribute

class

object

model
(special kind
of package)

Metaclass

«metaclass»
Attribute

«instanceOf»«instanceOf»

«metamodel»
MOF Meta-Metamodel

«metaclass»
Class

«metaclass»
Operation

«metaclass»
Attribute

+name : Name
... : ...
+initValue : Expression

... : ...
+isActive : Boolean

+... : ...
+specification : String

«metaclass»
Operation

+name : Name

«metaclass»
Class

+name : Name

+issuedBy : Airline
+issuingAgent : TravelAgent
+fare : Currency
+tax : Currency

45723990550: PassengerTicket

+issuedBy : Airline = AcmeAirlines
+issuingAgent : TravelAgent = TerrificTravel
+fare : Currency = 1050.00
+tax : Currency = 57.58

+total()
+issue()
+surrender()
+refund()

The fare attribute
of the
PassengerTicket
class is an
instance of the
metaclass
Attribute.

The issue
operation of the
PassengerTicket
class is an
instance of the
metaclass
Operation.

Represents the
User Objects
layer of the 4-
layer metamodel
architectural
pattern.

Metaclass
Attribute is an
instance of meta-
metaclass
Class.

«metamodel»
UML Metamodel

«use»

«use»

«instanceOf»

Figure 3. 4-layer metamodel architecture for UML.

Analysis Model

PassengerTicket

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

of models. This package supports various
behavioral diagrams, including use case diagrams,
sequence diagrams, collaboration diagrams,
statechart diagrams, and activity diagrams.

• The Model Management package defines the
semantics for grouping and managing model
elements. This package specifies several grouping
constructs, including package, model, and
subsystem.

The UML 1.3 Minor Revision
The best evidence of the quality of the UML change
process and its architecture may be found in the
UML RTF’s final product, the UML 1.3 specifica-
tion. As previously noted in this article, the UML
RTF began its work after inheriting several significant
legacy problems from UML 1.1. It also accumulated
458 issues from vendors and users before the RTF
comment deadline of October 1, 1998 [11]. A sum-

mary of the resolutions of these
issues is shown in Table 1. The
table shows that the RTF corrected
technical errors in 33.8% of the
submitted issues and rectified edi-
torial errors in an additional
13.5%. They produced clarifica-
tions for 14.4% of the issues, and
considered another 21% of them
to be outside its scope or without
merit. Of the remaining issues,
8.5% were redundant with another
issue and 2% were withdrawn by
their submitters. Only 6.8% of the
issues were deferred to a future
RTF or RFP process. The most sig-
nificant deferred issues will be dis-
cussed in the section “UML 2.0
Roadmap.”

What Table 1 doesn’t show is the
severity of the technical corrections,
or their potential impact on UML
vendors or modelers. A closer exam-
ination of the issues submitted and
the technical changes made to the
specification reveals that most of
them involved tuning the semantics
of the UML metamodel; only a
small number of minor modifica-
tions were made to the notation.

UML 1.1 legacy issues. As
expected, the most significant
changes in UML 1.3 addressed the
legacy problems known at the time
of the UML 1.1 final submission as

described in the following paragraphs.
Completion of activity graphs semantics and notation.

The improvements made to activity graphs include:
adding semantics for the dynamic invocation of states,
defining semantics and notation for executing condi-
tional threads, and increasing the functionality of
object flows. To make these revisions some changes
were also required in the state machine semantics on
which the activity graphs depend: adding “synch states”
for synchronizing concurrent activities, refining the
semantics of signals, and defining additional pseu-
dostates for combining state transitions.

Cleanup of standard elements for relationships. The
UML 1.3 revision began the cleanup of standard ele-
ments with the reorganization and renaming of rela-
tionships. The Relationship metaclass was introduced
to organize the various kinds of relationships, and the
dependency stereotypes were refactored into depen-
dencies and flows (become, copy). In addition, gener-

34 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Collaborations Use Cases

Core

dependency

Data Types

Extension
Mechanisms

Common
Behavior

State Machines

Model Management

subpackage

package

Activity Graphs

Behavioral Elements

Foundation

Figure 4. Architecture of UML metamodel layer.

alization was refined so that many previous stereotypes
are no longer required (inherit, private, subclass, sub-
type). The consistency of names for dependencies and
other relationships was also improved.

Architectural alignment. The UML 1.3 metamodel’s
architectural alignment with the MOF and the XMI
Facility was improved by the addition of a physical
metamodel and XMI DTD definitions. The physical
metamodel, derived from the UML semantics’ logical
metamodel, contains modifications to support the
generation of IDL and XMI DTD (e.g., converting
association classes to classes). Although this falls short
of a strict metamodeling approach, it provides a bridge
for future UML revisions to achieve that goal.

Other changes. In addition to the linguistic changes
noted previously, the modifications made to the lan-
guage in UML 1.3 are briefly described here.

Static structure diagrams. Constraints were relaxed so
that there can be associations from classes to interfaces
and so that classes can declare signals. Signals were
defined as a classifier that can have operations. The
semantics of templates and powertypes were also
refined.

Use case diagrams. Use case relationships were refined
into three primary kinds: generalization, include, and
extend.

Interaction diagrams. Constraints were relaxed so that
users can specify either roles or instances. In addition,
collaborations were made generalizable.

Model management diagrams. The semantics and
notation for models and subsystems were improved to
further distinguish them from packages and make them
easier to apply. The differences between access and
import permissions for packages were also clarified.

Although the kernel of the UML specification is the
definition of the language’s syntax and semantics, it also
includes related definitions for model interchange
(UML CORBAfacility and XMI DTD), language
extensions (UML Standard Profiles), and constraints
(Object Constraint Language). All of the related speci-
fications were updated to correct bugs and make them
consistent with the improvements in the kernel
language.

UML 2.0 Roadmap
In its final report the UML RTF identified various
improvements to the language that it was unable to
make because they were either outside of its scope or
required more time than was available. They recom-
mended that the next RTF pay special attention to
areas of extensibility and document management.

Extensibility. Users and tool vendors have identified
significant problems with the current extensibility
mechanisms [3]. Since these difficulties are likely to be

exacerbated by the expected influx of proposals for new
UML profiles, corrections will need to be made before
UML 2.0 is available to provide first-class extensibility.

Document management. The additions of a physical
metamodel and the XMI DTD specification have sub-
stantially increased the size of the UML specification
and made it unwieldy (it is now over 800 pages). The
next UML revision should separate the physical model-
ing specifications into a separate document.

The RTF further recommended that the following
improvements should be considered by the workgroup
drafting the UML 2.0 RFP:

• Architecture: Define a physical metamodel that is
rigorously aligned with the MOF meta-meta-
model using a strict metamodeling approach. Pro-
vide improved guidelines to determine what
constructs should be defined in the kernel language
and what constructs should be defined in UML
profiles or standard model libraries.

• Extensibility: Provide a first-class extensibility
mechanism consistent with a 4-layer metamodel
architecture. Improve the rigor of profile specifica-
tions so that they can support increased user
demands for language customization.

• Components: Improve the semantics and notation
to support component-based development, includ-
ing Enterprise Java Beans and DCOM.

• Relationships: Furnish substantive semantics for
refinement and trace dependencies. Define seman-
tics for associations at multiple levels of abstraction
(possibly by using generalization with an improved
syntax).

• Statecharts and activity graphs: Define activity graph
semantics independent of statechart semantics.
Provide more permissive concurrency in both state-
charts and activity graphs. Specify state machine
generalization.

• Model management: Refine notation and semantics
for models and subsystems to improve support for
enterprise architecture views.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 35

Issue Resolution
Correction of technical error
Correction of editorial error
Clarification
Considered and declined
Redundant with another issue
Deferred to next RTF or RFP
Withdrawn by the original submitter

Total

Number
155
62
66
96
39
31
9

458

Percent
33.8%
13.5%
14.4%
21.0%
8.5%
6.8%
2.0%

100.0%

Table 1. UML RTF issues.

• General mechanisms: Define a mechanism for
model versioning. Specify a mechanism for
diagram interchange.

Architectural Crossroads: Sculpting or
Mud-packing?
The strong emphasis of the UML RTF final report on
architectural issues suggests that UML is approaching
an architectural crossroads at the OMG. Although
UML appears to have survived, even thrived, under
the first cycle of RFP and RTF processes, it faces dif-
ficult new challenges as it enters the second round.

Many of the challenges arise from the architectural
urgency of the OMG to complete the specification of
the technical superstructure (application frameworks
or business components, for example) that comple-
ments the CORBA infrastructure for interprocess
communication and distributed operating system ser-
vices. Although CORBA IDL has proven extremely
effective for specifying the distributed computing infra-
structure, it does not allow specification of component
behavior or class relationships other than by generaliza-
tion.3 Consequently, IDL can be used to specify the
operations associated with an interface, but it cannot
define methods, use cases, collaborations, state
machines, work flows or the various relationships typi-
cally associated with real business components.

Since UML allows the user to define what IDL
lacks, one solution to this problem is to supplement
IDL with UML. (Completely replacing CORBA IDL
with UML would be too drastic a change for most
OMG members.) However, as with most good ideas,
the difficulties lie in the details of execution. In this
case, the UML presents the following challenges to
those who want to upgrade their IDL structural speci-
fications with relationships and behavior:

• Learning curve. UML is a general-purpose
modeling language that allows a full range of
semantic expression. While the basic language
constructs can be quickly grasped, it requires
significant time to master the advanced constructs.
It is not surprising then that the learning curve for
UML is much steeper than it is for CORBA or
DCOM IDL.

• Semantic bloat. Although it may be argued that the
size and complexity of UML are inevitable because
it is a general-purpose modeling language, the
language also includes a large number of standard
elements with vague or sparse semantics. The
language could be significantly simplified by

removing many of these from the kernel language.
(Some of these could be recast as elements in
UML profiles.)

• Lightweight extensibility. UML currently provides
only lightweight extension mechanisms, such as
stereotypes, constraints and tagged values. (Com-
pare metaclasses, which are heavyweight extension
mechanisms.) These mechanisms are challenged by
simple extensions, such as stereotypes for CORBA
IDL interfaces, and are stressed by more demand-
ing extensions, such as application frameworks and
distributed business components.

• Metamodeling mania. Since metamodeling is now
recognized as a powerful technique for managing
the complexity of distributed architectures, many
modelers are anxious to apply this new solution
sledgehammer to problems where a claw hammer
(e.g., a stereotype) or a tack hammer (e.g., a class
in a standard model library) would suffice.
Domain Task Forces, such as the Finance DTF
and the Telecom DTF, should focus on defining
modeling libraries that will standardize compo-
nents for reuse, not on defining new metaclasses.

A successful response to these challenges will require
that the OMG adopt a sculpting approach (where less
is more) rather than a mudpacking approach (some-
times associated with a “ball-of-mud” pattern) to
refine and extend the UML architecture. In particu-
lar, the OMG needs to perform effective triage in
determining which language extensions should be
treated as revisions to the UML kernel language, and
which should be handled as separate profiles (for
example, a generic profile for rule-based modeling) or
standard model libraries (for example, a model library
for finance with Stock and Commodity classes). If the
triage is performed properly, the integrity of the ker-
nel language will be maintained or improved, while
still allowing natural selection (via the OMG process)
to choose the most viable profiles and model libraries
for standardization.

Conclusion
UML 1.3 is the first mature release of the modeling
language specification. It corrects or ameliorates the
legacy problems inherited from UML 1.1, and recti-
fies most of the bugs discovered during the year fol-
lowing the final submission. The revision also
substantially improves the organization and clarity of
the specification, making it more straightforward for
vendors to implement and easier for modelers to
understand and apply.

From a modeler’s perspective not much has changed
between UML 1.1 and UML 1.3. Most of the

36 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

3With minor modifications many of these remarks regarding CORBA IDL also apply
to DCOM IDL.

improvements made to the language are infrastructural,
and involve tuning the semantics of the metamodel.
Only a modest number of small changes were made to
the notation, and these were only made after carefully
considering user feedback. Although many of the infra-
stuctural changes are invisible to most users, they will
make the language easier to implement and extend in
the future.

Why has UML succeeded where other proposed
language standards falter or fail outright? Considering
its four years of evolution, the following factors seem to
have contributed to UML’s success:

• Timing and positioning. With historical hindsight it
is obvious that UML was in the right place at the
right time. In the mid-1990s there was an urgent
need for a modeling language that would unify most
of the concepts associated with the leading object
methods.

• Critical mass of proven concepts. The early versions of
the language unified a sufficient number of proven
concepts so that users could solve real problems,
without getting bogged down with semantic or
notational detail. These same proven concepts served
as the language kernel as it scaled.

• Emphasis on rigorous process. As the language design
team increased in size, it adopted a more disciplined
software process with an iterative, incremental life
cycle. This process was essential to the completion of
the UML final submission and the minor revisions
in a timely manner.

• Focus on robust architecture. As the language scaled,
its designers continually refined its architecture to
manage the increased size and complexity. The
designers resisted pressures to add to the language,
and instead proposed constructive ways to reduce its
size and complexity in the future.

What is the future for UML? While we should be
encouraged by the roadmap for the next major release,
we should not be complacent. The UML offers archi-

tectural opportunities and challenges for the OMG and
its users. On the opportunity side, UML is enabling
modelers to precisely specify platform infrastructures as
well as business component frameworks. This bodes
well for future software architectures, such as Internet
architectures for e-business. On the challenge side,
UML’s size and expressive power is overwhelming some
users, some of whom are becoming lost in metamodel-
ing space. UML experts need to provide better examples
and guidelines for advanced applications of the lan-
guage, especially in the area of extensibility. Until UML’s
extensibility mechanisms are improved and guidelines
for their proper application are followed, a risk remains
that UML could devolve into a Babelian mix of home-
brewed notations with unintelligible semantics.

In the near future we can expect continued steady
growth in the already large community of UML mod-
elers. However, the best years for the language are still
to come. The standardization of UML will most likely
lead to substantive improvements in modeling tools
and methods, and explosive growth in standard model-
ing libraries. The associated gains in software produc-
tivity and quality should extend well into the next
millennium.

References
1. Booch, G. and Rumbaugh, J. Unified Method for Object-Oriented Devel-

opment v. 0.8. Rational Software Corp., 1995.
2. Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Lan-

guage for Object-Oriented Development v. 0.9. Rational Software Corp.,
1996.

3. Dykman, N., Griss, M., and Kessler, R. Nine suggestions for improving
UML extensibility. Proceedings of the UML’99 conference. To appear.

4. Kobryn, C. Modeling Software Architectures with UML. Addison Wesley
Longman, 2000. To be published.

5. MOF Revision Task Force. Meta Object Facility Specification v. 1.3. doc-
ument ad/99-06-05, Object Management Group, 1999.

6. OMG. Policy and Procedures of the OMG Technical Process. document
pp/99-05-01, Object Management Group, 1999.

7. UML Partners. Unified Modeling Language v. 1.0. OMG document
ad/97-01-14, January 1997.

8. UML Partners. Unified Modeling Language v. 1.1. OMG document
ad/97-08-11, August 1997.

9. Revision Task Force. OMG Unified Modeling Language Specification, v. 1.2.
document ad/98-12-02, Object Management Group, December 1998.

10. UML Revision Task Force. OMG Unified Modeling Language Specifica-
tion, v. 1.3. document ad/99-06-08, Object Management Group, June
1999.

11. UML Revision Task Force. OMG UML v. 1.3: Revisions and Recommen-
dations. document ad/99-06-10, Object Management Group, June 1999.

12. XMI Partners. XML Metadata Interchange (XMI) v. 1.0. OMG document
ad/98-10-05, October 1998.

Cris Kobryn (ckobryn@acm.org) is a chief architect in the
E.Solutions unit of EDS. He is the chair of the UML RTF Revision
Task Force and the co-chair of the Analysis and Design Platform Task
Force at the OMG.

© 1999 ACM 0002-0782/99/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 37

www.omg.org—OMG home page. Contains
specifications for UML and related modeling
standards, such as MOF and XMI.
uml.shl.com—UML RTF home page. Contains UML
specification artifacts, including the UML 1.3 final
draft and the RTF’s final report.
home.pacbell.net/ckobryn/uml.htm—UML
resource page containing links to specifications,
publications, events, and vendors.

Web References

