
COMMUNICATIONS OF THE ACM January 2002/Vol. 45, No. 1 107

T he Unified Modeling Lan-
guage (UML) has been
widely accepted throughout

the software industry and success-
fully applied to diverse domains
ever since it was adopted by the
Object Management Group
(OMG) in 1997. In those four
years, UML has become the de
facto standard for specifying soft-
ware architectures that increase in
value as we progress from simple
design models to multiview
enterprise blueprints. Indeed, it is
becoming difficult to find a soft-
ware project with more than 10
developers that does not employ
UML in some way to specify part
of the software architecture.

While the UML has been
growing in popularity among
software developers, the software
methods and practices it supports
have also been evolving steadily.
Some of the relevant changes to
methods and practices include
the maturation of component
architectures and methods; the
transition from heavyweight, rig-
orous methods such as the Uni-
fied Process to agile, lightweight

methods such as eXtreme Pro-
gramming (XP); and the conver-
gence of visual modeling with
visual programming techniques.
Considering these trends, as well
as numerous requests for UML
improvements, it should not be
surprising the OMG has decided
that UML 1.x is ready for a
major revision.

Consequently, the OMG has
issued four RFPs for UML 2.0:
an Infrastructure RFP concerned
with restructuring the basic con-
structs and improving customiz-
ability; a Superstructure RFP to
improve more advanced con-
structs such as components,
activities, and interactions; an
Object Constraint Language RFP
concerned with increasing the
precision and expressive power of
UML’s constraint language; and a
Diagram Interchange RFP to
address making model diagrams
interchangeable between tools
[2–5]. The four RFPs imply the
UML 2.0 specification will likely
be decomposed into four separate
and complementary parts as
shown in the figure here. This

discussion is primarily concerned
with the UML 2.0 Infrastructure
and Superstructure RFPs that
together define the requirements
for the modeling language part of
the specification.

The UML 2.0 major revision
represents both an excellent
opportunity and a serious respon-
sibility for its language designers.
It is a chance for them to resolve
the shortcomings of UML 1.x
and make the language more cur-
rent and precise. At the same
time, it charges them with the
responsibility for improving the
language without succumbing to
scope creep and design-by-com-
mittee compromises. For reasons
we will discuss, discharging this
responsibility for UML 2.0 will
likely be challenging.

Issues and Opportunities
UML 2.0 offers us an opportu-
nity to solve many of the major
issues associated with UML 1.x.
Some of the problems commonly
cited include excessive size, gratu-
itous complexity, imprecise
semantics, non-standard imple-

Will UML 2.0 Be Agile
or Awkward?

PA
U

L
W

A
TS

O
N

The UML sits at an architectural crossroad.
Will UML 2.0 resolve the problems of UML 1.x or will it
succumb to the dreaded second-language syndrome?

Cris Kobryn

108 January 2002/Vol. 45, No. 1 COMMUNICATIONS OF THE ACM

mentations, limited customizabil-
ity, inadequate support for com-
ponent-based development, and
inability to interchange model
diagrams. According to OMG’s
policies and procedures, these
substantive issues can only be
addressed by a major revision to
UML.

It has long been recognized
that UML 1.x is too large and
complex, making it unwieldy to

learn, apply, and implement.
After six years of working on the
UML specification and RFPs, I
am still amazed at how frequently
experts need to consult the UML
specifications regarding semantic
and notational minutiae. If Zen
mind is beginner’s mind, then
UML mind does not yet grok
Zen.

Hopefully, the next major revi-
sion will allow us to significantly

reduce the UML’s size and com-
plexity. UML designers can learn a
great deal from how the agile,
informal methods (for example,
XP, Feature-Driven Development,
and Crystal) are causing their
heavyweight, rigorous counterparts
(for example, Unified Process) to
streamline their techniques and
processes. They can also learn how
the Java and HTML/XML design-
ers streamlined C++ and SGML,
respectively. Like the Unified
Process, the UML needs to prac-
tice better parsimony and pragma-
tism. Perhaps the best place to
start reducing UML is by defining
a concise and precise language ker-
nel. (By “kernel” I mean the 20%
of the language that is used to
specify 80% of the common soft-
ware problems.)

Defining a language kernel will
make UML not only easier to
learn, but to implement. The ker-
nel can be used in conjunction
with a mature profile mechanism
(which includes metaclasses as
well as stereotypes) to define the
more advanced language features
such as the 80% of UML 1.x used
only 20% of the time. They can
also facilitate language customiza-
tion by vendors and users, so that
UML can be efficiently tailored
for different domains (for exam-
ple, financial services, health care,
telecom) and platforms (J2EE,
.NET).

A concise and precise kernel
will likely accelerate the compli-
ance of UML implementations
with the specification, something
that is long overdue. More than

Technical Opinion

Planned evolution of OMG UML.

«document»
UML 2.0

2002
(planned)

1997
(adopted by OMG)

Q2 2001

1999

1998

«document»
UML 2.0
Diagram

Interchange

Editorial revision
without significant
technical changes.

«document»
UML 2.0 OCL

«document»
UML 2.0

Infrastructure

«document»
UML 2.0

Superstructure

«document»
UML 1.4

«document»
UML 1.3

«document»
UML 1.2

«document»
UML 1.1

four years after the adoption of
UML 1.1, no modeling tool ven-
dor has yet fully implemented it
or any subsequent UML 1.x lan-
guage specification! We need to
remedy this situation with UML
2.0, and an excellent way to

begin is by defining a kernel that
can be efficiently implemented
and tested for compliance via the
XML Metadata Interchange
(XMI) standard.

UML 2.0 must also make the
component concept a core con-
struct that evolves throughout the
software life cycle, rather than an
afterthought for the implementa-
tion phase, as it sometimes
appears in UML 1.x. Although
the recent revisions to UML 1.4
make it easier to distinguish
between components (for exam-
ple, EJB Entity Beans, COM
objects) and the artifacts associ-
ated with them (for example, EJB
JAR files, DLLs), a good deal of
work remains before UML 2.0
can fully support component
architectures and methods. In
order to accomplish this, UML

2.0 will likely need to reduce
some of the impedance between
the object paradigm that under-
lies UML 1.x and the component
paradigm that has evolved from it
and other sources.

Lastly, UML 2.0 needs to sup-

port complete model inter-
change, including notational
diagrams. Until this is accom-
plished it will be impractical to
effectively share models among
competing modeling tools.

Second-Language
Syndrome
Since we understand most of the
problems described here reason-
ably well, one might think it
should be relatively straightfor-
ward to solve them with the
UML 2.0 revision. However, we
need to keep in mind that since
we are dealing with the second
major version of UML we will
likely need to contend with the
second-system effect, also known
as the “second-system syndrome.”
Frederick Brooks, Jr., first
described the pathology of this

dreaded syndrome in [1]:

An architect’s first work is apt to
be spare and clean. ... This second
is the most dangerous system a man
ever designs ... The general ten-
dency is to overdesign the second
system, using all the ideas and frills
that were cautiously sidetracked on
the first one. The result, as Ovid
says, is a “big pile.”

Although the pathology of
this syndrome was first diag-
nosed in large, complex software
engineering projects, the malady
also manifests itself in other tech-
nology endeavors such as soft-
ware language design. Here, we
consider a variation of the dis-
ease: the second-language syn-
drome known to infect various
programming language design
efforts such as those associated
with Ada, C++, and CLOS.

I am not claiming that UML
1.x is spare and clean; on the con-
trary, I consider the language
unwieldy and complex. (In fact,
one could argue UML 1.x suf-
fered from second-language syn-
drome during its initial
unification process!) Despite this
difference between UML 1.x and
the “architect’s first work,” I
expect that second-language syn-
drome will still be a serious prob-
lem for UML 2.0 for two reasons:
The requirements for the four
separate RFPs (contrast this with
one for UML 1.x) are so exten-
sive and ambiguous it will be dif-
ficult to prevent scope creep, let
alone reduce features. And the

COMMUNICATIONS OF THE ACM January 2002/Vol. 45, No. 1 109

Web resources.

Location Description

www.omg.org/uml

www.uml-forum.com

www.telelogic.com/publications/uml_models/

Contains links to OMG UML resources, such
as specifications, articles, and related webs.

Contains links to the UML 2.0 Working Group
and UML Revision Task Force webs, as well as
other UML resources.

UML Models and Methods column by author
that addresses timely issues related to UML
modeling techniques and methods. Includes
discussions of latest minor and major revisions.

record number of companies sub-
mitting to these RFPs will likely
make UML 2.0 vulnerable to a
large number of design-by-com-
mittee compromises.

Treatment and Prognosis
Fortunately, we have known
how to effectively treat second-
system syndrome and its vari-
ants since [1]:

How does the architect avoid the
second-system effect? Well, obvi-

ously he can’t skip his second system.
But he can be conscious of the
peculiar hazards of that system,
and exert self-discipline to avoid
functional ornamentation and to
avoid extrapolation of functions
that are obviated by changes in

assumptions and purposes.

Of course, exhorting others to
exert self-discipline and to
enforce architectural integrity in
language design is much easier
than practicing it ourselves. This
is especially true when the lan-
guage design is occurring in a
consortium with a record num-
ber of participants. Conse-
quently, I expect UML 2.0
designers will find that maintain-
ing basic project and architec-
tural discipline is far more
challenging than fulfilling any of
their technical requirements.

In facing this challenge, I hope
the UML designers learn from

the experiences of others as well
as their own (see the table here).
Besides Brooks, they would be
well advised to learn from design-
ers of both elegant and baroque
languages. (Please fill in your own
favorite language choices here.)

What should we expect from
the final submission for UML 2.0?
We should expect architectural
moderation (not to be confused
with design-by-committee com-
promises) to prevail, and a more
agile and more extensible UML to
result. If the UML 2.0 designers
fall short of this, we should start
searching for a new modeling lan-
guage and expect natural selection
to take its course.

References
1. Brooks, F. The Mythical Man-Month, Anniver-

sary Edition. Addison-Wesley, Reading, PA
1995.

2. Object Management Group. OMG UML 2.0
Infrastructure RFP, document ad/00-09-01.
Sept. 2000.

3. Object Management Group. OMG UML 2.0
Superstructure RFP, document ad/00-09-02.
Sept. 2000.

4. Object Management Group. OMG UML 2.0
OCL RFP, document ad/00-09-03. Sept. 2000.

5. Object Management Group. OMG UML 2.0
Diagram Interchange RFP, document ad/01-
02-09. Feb. 2001.

Cris Kobryn (Cris.Kobryn@telelogic.
com) is the chief technologist at Telelogic
and co-chair of both the UML Revision Task
Force and the Analysis and Design Task
Force at the OMG.

© 2002 ACM 0002-0782/02/0100 $5.00

c

110 January 2002/Vol. 45, No. 1 COMMUNICATIONS OF THE ACM

The UML 2.0 major revision represents
both an excellent opportunity and a serious
responsibility for its language designers. It is a
chance for them to resolve the shortcomings
of UML 1.x and make the language more
current and precise.

